Abscisic Aldehyde Is an Intermediate in the Enzymatic Conversion of Xanthoxin to Abscisic Acid in Phaseolus vulgaris L. Leaves.

نویسندگان

  • R K Sindhu
  • D H Griffin
  • D C Walton
چکیده

The enzymatic conversion of xanthoxin to abscisic acid by cell-free extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was present in cell-free leaf extracts from both wild type and the abscisic acid-deficient molybdopterin cofactor mutant, Az34 (nar2a) of Hordeum vulgare L. However, the enzyme activity catalyzing the synthesis of abscisic acid from abscisic aldehyde (abscisic aldehyde oxidase) was present only in extracts of the wild type and no activity could be detected in either turgid or water stressed leaf extracts of the Az34 mutant. Furthermore, the wilty tomato mutants, sitiens and flacca, which do not accumulate abscisic acid in response to water stress, have been shown to lack abscisic aldehyde oxidase activity. When this enzyme fraction was isolated from leaf extracts of P. vulgaris L. and added to extracts prepared from sitiens and flacca, xanthoxin was converted to abscisic acid. Abscisic aldehyde oxidase has been purified about 145-fold from P. vulgaris L. leaves. It exhibited optimum catalytic activity at pH 7.25 in potassium phosphate buffer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abscisic Aldehyde Is an Intermediate in the Enzymatic Conversion of Xanthoxin to Abscisic Acid in Phaseolus vulgaris L . Leaves 1

The enzymatic conversion of xanthoxin to abscisic acid by cellfree extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was p...

متن کامل

The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean.

Abscisic acid (ABA), a cleavage product of carotenoids, is involved in stress responses in plants. A well known response of plants to water stress is accumulation of ABA, which is caused by de novo synthesis. The limiting step of ABA biosynthesis in plants is presumably the cleavage of 9-cis-epoxycarotenoids, the first committed step of ABA biosynthesis. This step generates the C(15) intermedia...

متن کامل

The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde.

Mutants able to germinate and perform early growth in medium containing a high NaCl concentration were identified during the course of two independent screenings and named salt resistant (sre) and salobreño (sañ). The sre and sañ mutants also were able to germinate in high-osmoticum medium, indicating that they are osmotolerant in a germination assay. Complementation analyses revealed that sre1...

متن کامل

Xanthoxin Metabolism in Cell-free Preparations from Wild Type and Wilty Mutants of Tomato.

Extracts prepared from the turgid and water-stressed leaves of wild-type tomato (Lycopersicon esculentum Mill cv Ailsa Craig) and the wilty mutants sitiens, notabilis, and flacca were tested for their ability to metabolize xanthoxin to ABA. Extracts from wild type and notabilis converted xanthoxin at similar rates, while extracts from sitiens and flacca showed little or no activity. We also obs...

متن کامل

Biochemical Characterization of the aba 2 and aba 3 Mutants in Arabidopsis fhaliana ’ Steven

Abscisic acid (ABA)-deficient mutants in a variety of species have been identified by screening for precocious germination and a wilty phenotype. Mutants at two new loci, aba2 and aba3, have recently been isolated in Arabidopsis fhaliana (L.) Heynh. (K.M. LCon-Kloosterziel, M. Alvarez-Gil, G.J. Ruijs, S.E. Jacobsen, N.E. Olszewski, S.H. Schwartz, J.A.D. Zeevaart, M. Koornneef [1996] Plant J 10:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 93 2  شماره 

صفحات  -

تاریخ انتشار 1990